An image smoother is a filter of the size 3 x 3 that can be applied to each cell of an image by rounding down the average of the cell and the eight surrounding cells (i.e., the average of the nine cells in the blue smoother). If one or more of the surrounding cells of a cell is not present, we do not consider it in the average (i.e., the average of the four cells in the red smoother).

Given an m x n integer matrix img representing the grayscale of an image, return the image after applying the smoother on each cell of it.

Example 1:

Input: img = [[1,1,1],[1,0,1],[1,1,1]] Output: [[0,0,0],[0,0,0],[0,0,0]] Explanation: For the points (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0 For the points (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0 For the point (1,1): floor(8/9) = floor(0.88888889) = 0

Example 2:

Input: img = [[100,200,100],[200,50,200],[100,200,100]] Output: [[137,141,137],[141,138,141],[137,141,137]] Explanation: For the points (0,0), (0,2), (2,0), (2,2): floor((100+200+200+50)/4) = floor(137.5) = 137 For the points (0,1), (1,0), (1,2), (2,1): floor((200+200+50+200+100+100)/6) = floor(141.666667) = 141 For the point (1,1): floor((50+200+200+200+200+100+100+100+100)/9) = floor(138.888889) = 138

Constraints:

  • m == img.length
  • n == img[i].length
  • 1 <= m, n <= 200
  • 0 <= img[i][j] <= 255

Note: This problem is from LeetCode.
Compiled
Executed
Correct
program main
    use, intrinsic :: iso_fortran_env, only : error_unit, iostat_end, DP => REAL64
    implicit none
    integer, parameter :: m = 3, n = 3
    integer, dimension(m, n) :: img
    real(kind=DP), dimension(m, n) :: smoothed_img
    integer :: i, j

    ! read input
    read(*, *) img

    ! apply smoother
    do i = 1, m
        do j = 1, n
            smoothed_img(i, j) = floor(avg(img(i-1:i+1, j-1:j+1)))
        end do
    end do

    ! print output
    write (*, '(A)') 'Smoothed image:'
    do i = 1, m
        write (*, '(3I3)') smoothed_img(i, :)
    end do

contains

    function avg(arr) result(res)
        implicit none
        integer, intent(in) :: arr(:, :)
        integer :: res
        res = sum(arr) / size(arr, dim=1)
    end function avg

end program main
Compiled
Executed
Correct
program imageSmoother
    implicit none

    integer, parameter :: m = 3, n = 3
    integer :: img(m, n)
    integer :: smoothedImg(m, n)

    ! test case 1
    img = reshape((/1, 1, 1, 1, 0, 1, 1, 1, 1/), shape=(/m, n/))
    smoothedImg = imageSmoother(img)
    write (*,*) smoothedImg

    ! test case 2
    img = reshape((/100, 200, 100, 200, 50, 200, 100, 200, 100/), shape=(/m, n/))
    smoothedImg = imageSmoother(img)
    write (*,*) smoothedImg
end program imageSmoother

function imageSmoother(img) result(smoothedImg)
    implicit none

    integer, intent(in) :: img(3, 3)
    integer :: smoothedImg(3, 3)

    integer :: i, j
    integer :: sum, count

    do i = 1, 3
        do j = 1, 3
            sum = 0
            count = 0

            ! calculate the sum and count of the surrounding cells
            if (i > 1 .and. j > 1) then
                sum = sum + img(i-1, j-1)
                count = count + 1
            end if
            if (i > 1) then
                sum = sum + img(i-1, j)
                count = count + 1
            end if
            if (i > 1 .and. j < 3) then
                sum = sum + img(i-1, j+1)
                count = count + 1
            end if
            if (j > 1) then
                sum = sum + img(i, j-1)
                count = count + 1
            end if
            if (j < 3) then
                sum = sum + img(i, j+1)
                count = count + 1
            end if
            if (i < 3 .and. j > 1) then
                sum = sum + img(i+1, j-1)
                count = count + 1
            end if
            if (i < 3) then
                sum = sum + img(i+1, j)
                count = count + 1
            end if
            if (i < 3 .and. j < 3) then
                sum = sum + img(i+1, j+1)
                count = count + 1
            end if

            ! calculate the average and round down
            if (count > 0) then
                smoothedImg(i, j) = int(sum / count)
            else
                smoothedImg(i, j) = 0
            end if
        end do
    end do
end function imageSmoother
🌐 Data from online sources
def imageSmoother(img):
    m, n = len(img), len(img[0])
    result = [[0] * n for _ in range(m)]

    for i in range(m):
        for j in range(n):
            count, total = 0, 0
            for x in range(i - 1, i + 2):
                for y in range(j - 1, j + 2):
                    if 0 <= x < m and 0 <= y < n:
                        total += img[x][y]
                        count += 1
            result[i][j] = total // count

    return result
  1. Find the dimensions (m, n) of the input img array.
  2. Initialize the result array with the same dimensions as img.
  3. Iterate through each cell (i, j) of the img array.
  4. Iterate through 8 neighboring cells with corresponding coordinates (x, y) within a 3x3 grid centered at (i, j).
  5. Check if the neighboring cell (x, y) is within the boundaries of img. If so, add the value of img[x][y] to the sum, and increment the count.
  6. Calculate the average by dividing the sum by count and round down the result.
  7. Set the value of the result[i][j] to the calculated average.
  8. Return the result array.
🌐 Data from online sources
#include <vector>
using namespace std;

vector<vector<int>> imageSmoother(vector<vector<int>>& img) {
    int m = img.size(), n = img[0].size();
    vector<vector<int>> result(m, vector<int>(n, 0));

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            int count = 0, sum = 0;
            for (int x = i - 1; x <= i + 1; x++) {
                for (int y = j - 1; y <= j + 1; y++) {
                    if (x >= 0 && x < m && y >= 0 && y < n) {
                        sum += img[x][y];
                        count++;
                    }
                }
            }
            result[i][j] = sum / count;
        }
    }

    return result;
}
  1. Find the dimensions (m, n) of the input img array.
  2. Initialize the result array with the same dimensions as img.
  3. Iterate through each cell (i, j) of the img array.
  4. Iterate through 8 neighboring cells with corresponding coordinates (x, y) within a 3x3 grid centered at (i, j).
  5. Check if the neighboring cell (x, y) is within the boundaries of img. If so, add the value of img[x][y] to the sum, and increment the count.
  6. Calculate the average by dividing the sum by count and round down the result.
  7. Set the value of the result[i][j] to the calculated average.
  8. Return the result array.